
V9. ViewIt Commands
    ViewIt commands are executed via the FaceIt dispatching procedure found in the file 
"FaceProcXY" (or in some other form compatible with your programming environment):
    FaceIt(nil,[command],a,b,c,d);      Pascal
    FaceIt(0L,[command],a,b,c,d);        /* C */
    call FaceIt(0,[command],a,b,c,d) !Fortran
where parameters a, b, c, and d are 4-byte integers, and where other record elements from 
the global fRec or other records may be used with particular commands.
    Each ViewIt command name, its equivalent number, the parameters and record elements 
used by the command, and a complete description of the command are presented below.    
Command names can be used in place of the numbers in calls to the FaceIt dispatching 
procedure since they are declared as constants in the file "FaceStorXY" (or in some other 
way compatible with your programming environment).

Name    Number    Parameters & Variables used
NewWnd -1201    a,b,c,d,wWindow
Opens a new ViewIt window according to parameters passed:
        a = FWND resource ID (use -ID to keep window hidden)
        b = initial window modality    (see "Windows")
            0 = modal
            1 = modeless
        c = 0 or byte size of linked record (see "Data Links")
        d = 0 or address of linked record (see "Data Links")
and where wWindow returns with the window pointer (or nil if window was not opened).    If 
the FWND is not found, then ViewIt displays an alert and gives you the option of adding the 
FWND to the current res file at that time.
    COLOR NOTE:    In some cases you may need to know whether an attempt to open a color 
window was successful or not (i.e., whether the program is being run on a Mac with Color 
QuickDraw).    You can either check for the presence of Color QuickDraw directly (see 
fEnvFlags notes in "fRec Record" topic), or can examine the "rowBytes" field of the resulting 
window record (the 2-byte integer found at an offset of 6 bytes into the GrafPort or CGrafPort
record).    If rowBytes is negative, then the window is a color window.
    DRAWING NOTE:    If you use NewWnd to open one or more modeless windows that you 
wish to immediately draw into before calling DoLoop, then make a call to DoUpdt2 with d = 
8 before doing any drawing so that FaceIt (or FaceSt) has an opportunity to update its 
fActive... variables and can reset the current port to the active window.

EndWnd -1202 a,wiHit,wvHit,wcHit,wEvent
Disposes of the ViewIt window defined by parameter a, where a can be either an FWND ID, a
window pointer, zero to close the top modal or active modeless window, or -1 to close all 
open modal ViewIt windows.
    If the ViewIt window being closed is a modal window that lies below other modal windows, 
then all windows above it will also be closed (or made modeless again if they were modeless
windows made modal by MdlWnd).
    If the window being closed is modal, then the variables wiHit, wvHit, wcHit, wClick, and 
wEvent are also restored to the values that they held when the window was opened with 
NewWnd (or made modal with MdlWnd).    This feature facilitates the nesting of modal event 
loops designed around use of the "Hit" variables, but could be confusing in other cases if you
forget that EndWnd changes these variables.

MdlWnd -1203    a,b
Passes control to ViewIt to perform event handling for, or modify the current mode of, the 
window designated by a, where a can be either the associated FWND ID, the window's 
window pointer, or zero to designate the top modal or active modeless window.    Parameter 



b designates the operation:
        1 = convert modal window back to modeless
        0 = pass control to ViewIt for modal event handling
    -1 = pass control but return w/o processing events
    -2 = pass control and return after processing events
The latter modal operations (b = 0, -1, or -2) can be applied to both modal and modeless 
windows.    The window is always brought to the front and made visible, and modeless 
windows are made modal until MdlWnd is called again with b = 1.    MdlWnd is usually found 
between calls to NewWnd and EndWnd.    See the "Windows" topic for more info.
    If MdlWnd is used to convert a modal window back to its previous modeless state (b = 1), 
then the variables wiHit, wvHit, wcHit, wClick, & wEvent are also restored to the values that 
they held when the window was made modal.    As with EndWnd, this facilitates the nesting 
of modal event loops designed around use of the "Hit" variables, but could be confusing in 
other cases if you forget that MdlWnd changes these variables.

SizWnd -1204    a,b,c,d
Resizes the ViewIt window designated by a, where a can be either the associated FWND ID, 
window's window pointer, or zero to designate top modal or active modeless window.    
Parameters b and c are the window's new horizontal and vertical dimensions, respectively.    
The size of the window may be limited by controls or views that are attached to the bottom 
or right sides of the window.
    For modeless windows, parameter d can be optionally used to designate the amount of 
updating to be done at the time SizWnd is called, where its meaning is the same as that 
defined for FaceIt's DoUpdt2 command.
    To force ViewIt to just update the position and size of any attached controls without 
resizing the window, pass b = c = 0 to SizWnd.    This is useful in cases where your program 
directly adds, removes, moves, or resizes attached controls or views using ViewIt or toolbox 
commands.
NOTE:    Do not attempt to use the toolbox call SizeWindow in place of SizWnd since the 
former will not readjust the size of controls that are attached to the window's sides.

MovWnd -1205    a,b,c,d
Moves the ViewIt window designated by a, where a can be either the associated FWND ID, 
window's window pointer, or zero to designate top modal or active modeless window.    
Parameters b, c, & d are the same as those supported by UtilIt's MovRec command.

ShoWnd -1206    a,d
HidWnd -1207    a,d
Hides (HidWnd) or shows & selects (ShoWnd) the ViewIt window designated by a, where a 
can be either the FWND ID, the window's window pointer, or zero to designate top modal or 
active modeless window.    For modeless windows, parameter d can be optionally used to 
designate the amount of updating to be done at the time HidWnd or ShoWnd is called, 
where its meaning is the same as that defined for FaceIt's DoUpdt2 command.
NOTE:    Do not attempt to use the toolbox calls HideWindow, ShowWindow, or SelectWindow
in place of Hid/ShoWnd since the former will not maintain proper window layering.

SavWnd -1224    a
Saves the FWND resource associated with the ViewIt window designated by a, where a can 
be either the FWND ID, the window's window pointer, or zero to designate top modal or 
active modeless window.    If the window is opened at a fixed position ("Global Coordinates" 
option is checked in Window dialog), then SavWnd also saves the current position of the 
window as part of the FWND resource.    SavWnd is often used to give users the option of 
saving window positions as part of saving other program-specific setup info.



NOTE:    SavWnd does not call GetWVC to update the FWND in memory before saving it to 
disk, meaning that changes which your program directly makes to the window contents (via 
ShoCtl, ActCtl, AddCtl, etc.) will not be saved by SavWnd unless GetWVC is also called.

HlpWnd -1229    b,c,d
Opens ViewIt's main help window as a modeless window in a FaceIt or FaceSt-based 
program.    If FaceIt or FaceSt is not in use, or ViewIt's on-line help and editing resources are 
not available, then HlpWnd is ignored.    Parameters b, c, and d are the same as those 
supported by UtilIt's MovRec command for positioning the window.    The following call, for 
example, will place the help window on the main screen with its top, left corner offset 10 
pixels from the edge:
 FaceIt(nil,HlpWnd,0,0,10,10);

GetWnd -1209    a,b,c,d,wWindow-cString
GetCtl -1211    a,b,c,d,cControl-cString
GetWVC -1208    a,b,c,d,wWindow-cString
ShoCtl -1212    a,b,c,d,cControl-cString
ActCtl -1219    a,b,c,d,cControl-cString
SelCtl -1220    a,b,c,d,cControl-cString
SavCtl -1223    a,b,c,d,cControl-cString
DspCtl -1221    a,b,c,d,cControl-cString
GetVal -1213    a,b,c,d,cControl-cString
SetVal -1214    a,b,c,d,cControl-cString
These commands all make the same use of parameters a, b, c, and d to locate a window and
control.    a & b are used to designate the window (4 options):
              a = 0, b = control handle (control's "owner" is used)
    or    a = 0, b = 0 = top modal or active modeless window
    or    a = FWND ID, b = nth such window (0 or 1 = topmost)
    or    a = window pointer, b = 0
and c & d designate a control in that window (4 options):
              c = view number, d = control number in that view
    or    c = 0, d = item number (the dth control in window)
    or    c = 0, d = control handle (a & b are ignored)
    or    c = 0, d = 0 apply to all (Get/SetVal, Sav/DspCtl)
    or    c = 0, d = 0 = skip getting control info (GetWnd)
    or    c = 0, d = 0 = get FWND-type handle (GetWVC)
If d is a control handle, then a, b, and c are ignored since the control record itself specifies 
the owning window.    If a window or control cannot be found, then the corresponding 
wWindow or cControl variable returns zero (nil).
    GetCtl updates the contents of the global fRec record with information about the specified 
control.    This information is copied from relocatable control records into the fRec variables 
cControl (the control handle) to cString. (Note that the cTitle and cString strings are returned
as Pascal strings, but can, if necessary, be converted to other string types using UtilIt's 
CnvStr command.)
    GetWnd is identical to GetCtl except that it also returns information about the ViewIt 
window in the fRec variables wWindow (the window pointer) to wiCount.
    GetWVC calls GetWnd (if c & d = 0) or GetCtl (if c or d ≠ 0), and then converts the 
specified window, view, or control into the corresponging FWND, FVEW, or FCTL-type 
relocatable block, returning the block's handle in uResult.    If uResult is zero (nil), then either
the control, view, or window could not be found, or there was not enough memory to create 
the block.
    An FWND handle returned by GetWVC is the handle to the FWND resource associated with 
the window.    The command SavWnd can be used, if desired, to save this updated FWND to 



disk as a means of saving window settings.
    An FVEW or FCTL handle returned by GetWVC is not a resource, and you are responsible 
for disposing of the block when finished with it (using "DisposHandle").    One use of this form
of GetWVC is in the cloning of existing controls or views.    In this case GetWVC is used to 
create an FVEW- or FCTL-type block, and the block's handle is then passed to AddVew or 
AddCtl to add one or more copies of the view or control to the window.
    ShoCtl and ActCtl are just convenient commands that take the place of calling GetCtl 
followed by a toolbox call that gets passed cControl.    ShoCtl calls ShowControl to show the 
control if the view or control number is positive, and HideControl if the number is negative:
 FaceIt(nil,ShoCtl,0,0,-1,0); hide first view
 FaceIt(nil,ShoCtl,0,0,1,-6); hide 6th control
ActCtl calls HiliteControl to either activate the control if the view or control number is 
positive, or inactivate it if the number is negative.    (NOTE:    Complex controls such as lists 
and help text will not be properly act/deactivated if they are not visible or are in a hidden 
view.    This limitation occurs because hidden controls do not receive the drawing message 
that notifies the driver of a hilite change.)
    ShoCtl and ActCtl also support the use of parameters c and d to affect two views at the 
same time when the first view is being hidden or inactivated.    In this case parameter d is 
interpreted as a second view to show or activate:
 FaceIt(nil,ShoCtl,0,0,-1,2); hide v1/show v2
which facilitates switching from one view to another.
    SelCtl attempts to select the designated control and then, if necessary, scroll it into view.    
To become selected, the control must be editable, visible, active, and within the active 
modeless window or topmost modal window.    If the window is not active, then the control 
will become selected when the window is brought to the front.    If the control is not editable, 
then it is simply scrolled into view.    Calling SelCtl is equivalent to tabbing to or clicking in an
editable control to select it, and results in updating the vSelectCtl, vSelectRec, and vSelectID
variables in fRec.
    SavCtl notifies the designated control that it should ask the user if changes made to the 
control's contents should be saved.    If the user does not cancel the operation, or if the 
control does not support the "Save" message, then uResult returns zero.    If uResult ≠ 0, 
then the program should abort whatever operation led it to call SavCtl.    If c = d = 0 is 
passed, then all controls in the window that are set up to support the "Save" message are 
notified.    SavCtl is usually called before a DspCtl or EndWnd call that involves the disposal 
of a control whose contents can be saved.    Also note that, when quitting, FaceIt 
automatically calls SavCtl for all ViewIt controls that support the "Save" message.
    DspCtl disposes of the designated control, removing it completely from memory and 
redrawing the affected area of the window.    If c = d = 0, then all controls in the window are 
disposed of.    NOTE:    DspCtl must be used in place of "DisposeControl" and "KillControls" 
since the latter do not update or dispose of private data maintained by ViewIt.
    GetVal is used to update a program's linked data record with values from the window's 
controls, and SetVal is used to update the window's controls with values from the linked data
record.    When used to get or set values for one control, these commands also result in 
updating the fRec variables cControl to cString.    See "Data Links" for further info.
    WARNING:    Do not assume that the content of any "u", "w", or "c" prefixed fRec variables 
is preserved across calls to the Control Manager or the FaceIt dispatching procedure.    Values
that might need to be used again, such as a cControl control handle, should be saved in 
program variables.    One exception:    Most UtilIt commands preserve "w" & "c" var.s.

AddVew -1200    a,b,c,d
AddCtl -1216    a,b,c,d
Uses the FVEW (AddVew) or FCTL (AddCtl) type block designated by parameter a to add b 
copies of a new view or control, within the window or above the control designated by c, at a
screen position offset by d pixels:
        a = FVEW (AddVew) or FCTL (AddCtl) resource ID



    or    a = FVEW or FCTL block handle returned by GetWVC
        b = number of new views or controls to create (0 = 1)
            (use -b to indicate that new objects should be hidden)
        c = object above/within which new object is to be placed
            0 = top window (AddVew) and top view (AddCtl)
            other = FWND ID, window pointer, or control handle
        d = screen offset from top, left of object designated by c
            (hi word = pixels across, lo word = pixels down)
If successful, uResult returns with the control handle of the new view or control, otherwise it 
is set to zero (nil).    The following call, for example, would use FCTL 1010 to add one new 
control to top, left of top view in top window,
 FaceIt(nil,AddCtl,1010,0,0,0);
and return the new control's control handle in uResult.    Calling AddVew or AddCtl has the 
same effect as using the standard menu item "Paste" when in ViewIt's editing mode.
    When working with a large number of potential views in a window, AddVew should be 
considered as an alternative to hiding/showing views (i.e. DspCtl/AddVew would be used to 
show next view instead of Hide/ShowControl).    AddVew has the disadvantage of being a bit 
slower than a simple ShowControl, but does not require that all of the views be initialized 
when the window is first opened.
    RESOURCE NOTE:    To create a new FVEW or FCTL resource to be later used with AddVew 
or AddCtl, simply copy the corresponding view or control when in editing mode and then use
ResEdit to paste it into a resource file.

LnkCtl -1210    a,b,c,d
Establishes link used by GetVal/SetVal between program variable and control value (see 
"Data Links" topic) where, 
        a = control handle (typically obtained from GetCtl)
        b = memory address of program variable
            (use b = 0 to "unlink" a control)
        c = data type of program variable
        d = digits (hi word) and number format (lo word)
            (0 = general format, 4 fig.s, & decimal 0s removed)
            (use d = -1 to preserve current digits/format)
For example, LnkCtl could be used to link an editable text control at v1c4 to an integer 
variable "i" by calling,
 FaceIt(nil,GetCtl,0,0,1,4); view 1, control 4
 f := 2 + (3 * 65536); fixed point, 3 decimals
 FaceIt(nil,LnkCtl,ord(cControl),ord(@i),2,f);
where "@i" is the memory address of variable "i", "2" is the data type of a 2-byte integer, "f"
is the combination of digits and format numbers, and "ord" is Pascal's way of converting the 
control handle and address to long integers.
    LnkCtl is particularly useful in cases where variables to be linked are not located within a 
single record, or when links need to be established with controls that have been dynamically
added to a window (using AddCtl).    Also note that LnkCtl can be used in combination with 
the linking of an entire record to a ViewIt window (see "Data Links"), and that it is not 
necessary to "unlink" a control (b = 0) before linking it to a new variable.
    TECHNICAL NOTE:    Calling LnkCtl results in resetting the control's private ccDataPtr, 
ccDataType, ccDataDigits, and ccDataFormat variables.    It also resets ccDataOffset to -1 to 
prevent the control from being later linked to a program record.    The alternative approach 
of setting the control's data linking info in ViewIt's Control dialog, and then passing a record 
address when calling NewWnd, is simply another way of getting the control's private 
ccDataPtr, ccDataType, ccDataDigits, and ccDataFormat set, which are the variables used by
ViewIt when executing GetVal and SetVal.

OvrCtl -1215    a,b



Installs an override procedure where a is either a control's control handle or a procedure ID 
number, and b is a main program procedure address.    To deinstall an override proc, simply 
pass 0 in parameter b.    See the "Override" topic for further details.

DrwCtl -1217    a,b
Redraws the ViewIt control whose control handle is given by parameter a.    Use b = 0 to 
redraw the entire control (same as toolbox call Draw1Control), or b = 2 to only redraw the 
visible content area of the control.    Do not use DrwCtl in place of toolbox calls SetCtlValue 
or HiliteControl since the latter perform additional operations which are necessary when 
changing the control's value or hilite state.
NOTE: DrwCtl works best with controls that have solid bodies (are not transparent) since it 
does not first erase the control area before drawing.    For transparent controls (such as 
transparent static text), it is better to use the toolbox call InvalRect to invalidate the control 
area (cRect or cClip) so that it is completely erased and redrawn.

ScrCtl -1218    a,b,c,d
Scrolls (or resizes, see below) content area (= cContent) of the ViewIt view or control whose 
control handle is given by parameter a.    Parameter c is the horizontal number of pixels to 
scroll, and d is the vertical pixels. Positive values of c correspond to scrolling the content to 
the right, and negative values to the left.    Positive values of d correspond to scrolling the 
content down, and negative values up.    No scrolling is done if the content area in the 
corresponding dimension is less than or equal to the visible content area (= cClip, see 
"Controls" topic for definitions).
    ScrCtl always scrolls the content area in multiples of 8 pixels to minimize the distortion of 
QuickDraw patterns, and never results in the content being scrolled completely out of view 
(i.e. you can pass large c or d values to scroll to an edge).    Any content area needing 
updating is also redrawn before returning from ScrCtl.
    ScrCtl can also be used to resize the content area of views or controls. To do this, pass b = 
1 to inform ViewIt that the size of the content area is being adjusted, and use c and d to 
define the new horizontal and vertical dimensions (pixels).    ViewIt resizes the control's 
content area, and, if necessary, scrolls the content back into view.
    Resizing the content area is usually used by programmers who dynamically add controls to
scrollable views.    In such a case, for example, the size of the content area of the view 
control might be adjusted to fit the number and position of daughter controls added.
    NOTE:    Both hand scrolling and the ScrCtl command take advantage of ViewIt's built-in 
support for scrolling control contents.    This support makes use of a "content" rectangle that 
can be larger than the control's visible content area.    Some controls, however, ignore this 
scheme or use more complex, private scrolling schemes, and cannot be scrolled with ScrCtl.  
A good rule to follow is that if the control can be hand scrolled, then it also supports ScrCtl.

StlCtl -1222    a,b,c,d
Resets the text font, size, and style of the ViewIt control whose control handle is given by 
parameter a.    Parameters b, c, and d have the same meaning as those used in UtilIt's 
SetFSS command (see "Windows" topic in UtilIt Guide).    If visible, the control is redrawn.    If 
selected, the FSSC menus are updated to reflect the style changes.


